MATH 10550
 SOLUTIONS TO PRACTICE FINAL EXAM

1.Compute $\lim _{x \rightarrow 2^{-}} \frac{x^{2}-4}{x^{2}-5 x+6}$.

Solution

When $x \neq 2$,

$$
\frac{x^{2}-4}{x^{2}-5 x+6}=\frac{(x-2)(x+2)}{(x-2)(x-3)}=\frac{x+2}{x-3} .
$$

So

$$
\lim _{x \rightarrow 2^{-}} \frac{x^{2}-4}{x^{2}-5 x+6}=\frac{2+2}{2-3}=-4 .
$$

2. Compute $\lim _{x \rightarrow 0^{+}} \frac{x^{2}-9}{\sin x}$.

Solution

If x is close to 0 but larger than 0 , then the denominator $\sin x$ is a small positive number and $x^{2}-9$ is close to -9 . So the quotient $\frac{x^{2}-9}{\sin x}$ is a large negative number. So

$$
\lim _{x \rightarrow 0^{+}} \frac{x^{2}-9}{\sin x}=-\infty .
$$

3. Evaluate $\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}-x}-\sqrt{x^{2}+5 x}\right)$.

Solution

$$
\begin{aligned}
\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}-x}-\sqrt{x^{2}+5 x}\right) & =\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}-x}-\sqrt{x^{2}+5 x}\right) \frac{\sqrt{x^{2}-x}+\sqrt{x^{2}+5 x}}{\sqrt{x^{2}-x}+\sqrt{x^{2}+5 x}} \\
& =\lim _{x \rightarrow \infty} \frac{\left(x^{2}-x\right)-\left(x^{2}+5 x\right)}{\sqrt{x^{2}-x}+\sqrt{x^{2}+5 x}} \\
& =\lim _{x \rightarrow \infty} \frac{-6 x}{\sqrt{x^{2}\left(1-\frac{1}{x}\right)}+\sqrt{x^{2}\left(1+\frac{5}{x}\right)}} \\
& =\lim _{x \rightarrow \infty} \frac{-6 x}{x \sqrt{1-\frac{1}{x}}+x \sqrt{1+\frac{5}{x}}} \\
& =\lim _{x \rightarrow \infty} \frac{-6}{\sqrt{1-\frac{1}{x}}+\sqrt{1+\frac{5}{x}}} \\
& =\frac{-6}{\sqrt{1-0}+\sqrt{1+0}}=-3 .
\end{aligned}
$$

4.

Let $f(x)= \begin{cases}a x+1 & x<0, \\ x^{2}+1 & x \geq 0 .\end{cases}$
For what constant a is f differentiable everywhere?

Solution

f is clearly differentiable for $x<0$ and for $x>0$. For $x<0, f^{\prime}(x)=a$, so $\lim _{x \rightarrow 0^{-}} f^{\prime}(x)=a$. For $x>0, f^{\prime}(x)=2 x$, so $\lim _{x \rightarrow 0^{+}} f^{\prime}(x)=0$. For f to be differentiable at 0 , we need $a=\lim _{x \rightarrow 0^{-}} f^{\prime}(x)=\lim _{x \rightarrow 0^{+}} f^{\prime}(x)=0$.
5. Compute $\lim _{x \rightarrow 0} \frac{\tan 2 x}{\sin 3 x}$.

Solution

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\tan 2 x}{\sin 3 x} & =\lim _{x \rightarrow 0} \frac{\sin 2 x}{\cos 2 x \cdot \sin 3 x} \\
& =\lim _{x \rightarrow 0}\left(\frac{\sin 2 x}{x} \cdot \frac{1}{\cos 2 x} \cdot \frac{x}{\sin 3 x}\right) \\
& =\lim _{x \rightarrow 0} \frac{2 \sin 2 x}{2 x} \cdot \lim _{x \rightarrow 0} \frac{1}{\cos 2 x} \cdot \lim _{x \rightarrow 0} \frac{3 x}{3 \sin 3 x} \\
& =2 \lim _{x \rightarrow 0} \frac{\sin 2 x}{2 x} \cdot \lim _{x \rightarrow 0} \frac{1}{\cos 2 x} \cdot \frac{1}{3} \lim _{x \rightarrow 0} \frac{3 x}{\sin 3 x} \\
& =2(1) \cdot 1 \cdot \frac{1}{3}(1)=\frac{2}{3}
\end{aligned}
$$

6. Compute $\lim _{x \rightarrow-\infty} \frac{\sqrt{4 x^{2}+x+1}}{3 x-1}$.

Solution.

Note $x=-\sqrt{x^{2}}$ for $x<0$. Multiply the top and bottom of $\frac{\sqrt{4 x^{2}+x+1}}{3 x-1}$ by $\frac{1}{x}$ to get

$$
\frac{\sqrt{4 x^{2}+x+1}}{3 x-1}=\frac{\frac{1}{x} \cdot \sqrt{4 x^{2}+x+1}}{\frac{1}{x} \cdot(3 x-1)}=-\frac{\sqrt{4+(1 / x)+\left(1 / x^{2}\right)}}{3-(1 / x)} .
$$

Hence the limit as $x \rightarrow-\infty$ is $-\frac{\sqrt{4}}{3}=-\frac{2}{3}$.
7. Compute the tangent line to the ellipse given by the equation $x^{2}+4 y^{2}=5$ at the point $(1,-1)$
Solution. If we take the derivative with respect to both sides of the equation we see $2 x+8 y \frac{d y}{d x}=0$, or $\frac{d y}{d x}=-\frac{x}{4 y}$. So the slope at $(1,-1)$ is $\frac{1}{4}$. Thus the tangent line at $(1,-1)$ is

$$
y+1=\frac{1}{4}(x-1),
$$

or

$$
y=\frac{1}{4} x-\frac{5}{4} .
$$

8. Let $F(x)=f(g(x))$. Compute $F^{\prime}(2)$ using the following information:

$$
\begin{aligned}
& f(-1)=-3, f(2)=12, g(-1)=-7, g(2)=-1 \\
& f^{\prime}(-1)=2, f^{\prime}(2)=8, g^{\prime}(-1)=-1, g^{\prime}(2)=5
\end{aligned}
$$

Solution. Using the chain rule, $F^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)$, so $F^{\prime}(2)=$ $f^{\prime}(g(2)) g^{\prime}(2)=f^{\prime}(-1) \cdot 5=2 \cdot 5=10$
9. For $y=(\sin 4 x)^{8}$, compute y^{\prime}.

Solution. Using the chain rule a total of three times, we get

$$
\begin{aligned}
y^{\prime} & =8 \cdot(\sin 4 x)^{7} \cdot \frac{d}{d x}(\sin (4 x))=8 \cdot(\sin 4 x)^{7} \cdot \cos 4 x \cdot \frac{d}{d x} 4 x \\
& =32(\sin 4 x)^{7} \cos 4 x .
\end{aligned}
$$

10. How many inflection points does the curve $y=\frac{x^{5}}{5}+\frac{x^{4}}{4}$ have?

Solution. First we note $y^{\prime}=x^{4}+x^{3}$ and $y^{\prime \prime}=4 x^{3}+3 x^{2}=x^{2}(4 x+3)$. Hence $y^{\prime \prime}=0$ at $x=0$ and $x=-3 / 4$. However, $y^{\prime \prime}<0$ in $(-\infty,-3 / 4)$ and $y^{\prime \prime}>0$ in $(-3 / 4,0)$ and $(0, \infty)$. Hence only $-3 / 4$ is the inflection point.
11. Compute the derivative y^{\prime} for the curve $\sqrt{x^{2}+y^{2}}=2+y$ at the point $x=4, y=3$.
Solution. Taking the derivative of both sides of the equation and using the chain rule gives $1 / 2\left(x^{2}+y^{2}\right)^{-1 / 2}\left(2 x+2 y y^{\prime}\right)=y^{\prime}$. So evaluating at the point $x=4, y=3$, we get $1 / 2\left(4^{2}+3^{2}\right)^{-1 / 2}\left(2 \cdot 4+2 \cdot 3 y^{\prime}\right)=y^{\prime}$ gives $1 / 10\left(8+6 y^{\prime}\right)=y^{\prime}$ which we can solve for to get $y^{\prime}=2$.
12. A kite 100 ft above the ground is flying horizontally (away from its holder) with a speed of $16 \mathrm{ft} / \mathrm{sec}$. At what rate is the angle between the string and the horizontal direction changing, when 200 ft of the string have been let out?
Solution. The kite is at a constant height of 100 ft with a length of $x \mathrm{ft}$ away. So using some trigonometry, we see that if θ is the angle between the string and the horizontal direction, $\tan \theta=100 / x$. Taking the derivative with respect to t gives $\sec ^{2} \theta \frac{d \theta}{d t}=-100 x^{-2} \frac{d x}{d t}=-1600 x^{-2}$ since the kite is flying away at $16 \mathrm{ft} / \mathrm{sec}$. When 200 ft have been let out, $\sin \theta=1 / 2$ and $\theta=\pi / 6$. At this value of θ we have $4 / 3 \frac{d \theta}{d t}=-\frac{1600}{200^{2}-100^{2}}$ or

$$
\frac{d \theta}{d t}=-\frac{1200}{30000}=-\frac{1}{25} \frac{\text { radians }}{\text { second }}
$$

13. Find the linearization of $f(x)=\sqrt{10-x^{2}}$ at $a=-1$.

Solution. The linearization of $f(x)$ at $a=-1$ is $L(x)=f(a)+$ $f^{\prime}(a)(x-a)$. At $a=-1, f(a)=3$ and $f^{\prime \prime}(x)=1 / 2\left(10-x^{2}\right)^{-1 / 2} \cdot(-2 x)$ so $f^{\prime}(a)=1 / 3$ and substituting back in gives $f(x)=3+1 / 3(x+1)$.
14. Find all local maxima and minima of the function $f(x)=2|x|-$ $x^{2}-1$.
Solution. Taking the derivative of $2 x-x^{2}-1$ for $x>0$ gives $f^{\prime}=$ $2-2 x$ which means a critical point is at $x=1$. Taking the derivative again and using the second derivative test gives $x=1$ is a local maxima.

Taking the derivative of $-2 x-x^{2}-1$ for $x<0$ gives $f^{\prime}=-2-2 x$ which means a critical point is at $x=-1$. Taking the derivative again and using the second derivative test gives $x=-1$ is a local maxima.

When $x<0$ the function is increasing and when $x>0$ the function increases for small values away from 0 so it is easy to see that $x=0$ is a local minima.
15. Find all asymptotes of the curve $y=\frac{2 x^{2}+x+1}{x-1}$.

Solution. The curve $y=\frac{2 x^{2}+x+1}{x-1}$ is undefined at $x=1$ and so has a vertical asymptote there. Now,

$$
\lim _{x \rightarrow \pm \infty} \frac{2 x^{2}+x+1}{x-1}= \pm \infty
$$

so there is no horizontal asymptote. Let's do long division to see if there is a slant asymptope. One gets

$$
\frac{2 x^{2}+x+1}{x-1}=2 x+3+\frac{4}{x-1} .
$$

Hence $y=2 x+3$ is a slant asymptope because as $x \rightarrow \pm \infty, 2 x+3+\frac{4}{x-1}$ goes to $2 x+3$.
16. Find all the points on the hyperbola $y^{2}-x^{2}=4$ that are closest to the point $(2,0)$.
Solution. The distance formula between a point (x, y) and $(2,0)$ is given by

$$
d(x, y)=\sqrt{y^{2}+(x-2)^{2}} .
$$

We want to consider only points (x, y) such that $y^{2}-x^{2}=4$. Solving for $y^{2}, y^{2}=x^{2}+4$. Substituting into the distance formula, we have

$$
d(x)=\sqrt{x^{2}+4+(x-2)^{2}}=\sqrt{2 x^{2}-4 x+8} .
$$

To minimize distance, we use the first derivative to find critical points.

$$
d^{\prime}(x)=\frac{4 x-4}{2 \sqrt{2 x^{2}-4 x+8}} .
$$

If $d^{\prime}(x)=0$ then $4 x-4=0$ and so $x=1$. Note $d^{\prime}(x)<0$ for $x<1$ and $d^{\prime}(x)>0$ for $x>1$. Hence $d(x)$ decreases for $x<1$ and increases
for $x>1$, and therefore $d(x)$ realizes its global minimum at $x=1$. Because a hyperbola is not an actual function, there can be more than one y associated with a particular x. Earlier we found $y^{2}=x^{2}+4$. Then $y=\sqrt{x^{2}+4}$. When $x=1, y= \pm \sqrt{5}$. So the two distance minimizing points on the hyperbola are $(1, \pm \sqrt{5})$.
17. A page of a book is to have a total area of 150 square inches, with 1 inch margins at the top and sides, and a 2 inch margin at the bottom. Find the dimensions in inches of the page which will have the largest print area.
Solution. You should draw a picture for this problem. If l is the total length of the page, w is the total width, and A is the print area, then

$$
l w=150, A=(l-2)(w-3) .
$$

We want to maximize A so we want to substitute in for one of the variables so that we can take the derivative. Note $l=150 / w$. Therefore,

$$
A(w)=\left(\frac{150}{w}-2\right)(w-3)=150-\frac{450}{w}-2 w+6
$$

and

$$
A^{\prime}(w)=\frac{450}{w^{2}}-2
$$

If $A^{\prime}(w)=0$ then $w^{2}=225$ so $w=15$. The first derivative test easily shows this gives a maximum area. Since $l=150 / w, l=10$.
18. Newton's method is to be used to find a root of the equation

$$
x^{3}-x-1=0 .
$$

If $x_{1}=1$, find x_{2}.
Solution. If we let $f(x)=x^{3}-x-1$ then $f^{\prime}(x)=3 x^{2}-1$. Hence

$$
x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}=1-\frac{f(1)}{f^{\prime}(1)}=1-\frac{-1}{2}=1.5
$$

19. Express the limit below as a definite integral.

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{\pi}{4 n} \sec ^{2}\left(\frac{i \pi}{4 n}\right)
$$

Solution. It is probably easiest to guess first that the sum is a straightforward Riemann Sum and only look for tricks if necessary. Normally in a Riemann sum to n, n is the number of divisions of the
interval. We should also expect the $\frac{\pi}{4 n}$ to be the length of the subintervals. Hence the total interval should be of length $\frac{\pi}{4}$. Then it is clear that $\frac{i \pi}{4 n}$ is simply the right-hand endpoint of the i-th interval. Hence our limit is simply $\int_{0}^{\pi / 4} \sec ^{2}(x) d x$.
20. If $f(x)=\int_{0}^{5 x} \cos \left(u^{2}\right) d u$, find $f^{\prime}(x)$

Solution. We want to apply the Fundamental Theorem of Calculus, but cannot immediately. So we define

$$
g(x)=\int_{0}^{x} \cos \left(u^{2}\right) d u
$$

to get $f(x)=g(5 x)$. By the chain rule, $f^{\prime}(x)=5 g^{\prime}(x)$. Now we can apply the Fundamental Theorem to g :

$$
f^{\prime}(x)=5 g^{\prime}(x)=5 \cos \left((5 x)^{2}\right)=5 \cos \left(25 x^{2}\right)
$$

21. Evaluate the integral $\int_{0}^{\sqrt{\pi}} x \sin \left(x^{2}\right) d x$.

Solution. Let $u=x^{2}$. Then $d u=2 x d x$ and

$$
\int_{0}^{\sqrt{\pi}} x \sin \left(x^{2}\right) d x=\frac{1}{2} \int_{0}^{\pi} \sin (u) d u=-\left.\frac{1}{2} \cos (u)\right|_{0} ^{\pi}=1 / 2+1 / 2=1 .
$$

22. Which of the following integrals give the area of the region below the curve $y=2 x$ and above the curve $y=x^{2}-4 x$?
Solution. You should draw a picture. We find the intersection points of the two curves by solving

$$
2 x=x^{2}-4 x \Leftrightarrow x^{2}-6 x=0 \Leftrightarrow x(x-6)=0 \Leftrightarrow x=0,6 .
$$

For small $x, x^{2}-4 x<0$. In $[0,6]$, the curve $y=x^{2}-4 x$ is below $y=2 x$. This can be seen by taking, say, $x=1$. Therefore the area between the curves is given by

$$
\int_{0}^{6}\left(2 x-\left(x^{2}-4 x\right)\right) d x
$$

23. Consider the area in the $x y$ plane bounded by the curves $y=0$ and $y=x-x^{2}$. If we rotate this area about $x=7$, what integral gives the volume?

Solution. Draw a graph. Use the shell method. The two curves intersect when $0=x-x^{2}$. This happens for $x=0,1$. Since we are
rotating about the line $x=7$ the radius of each shell will be $7-x$. The height of the shell will be given by $x-x^{2}$. Therefore the integral is

$$
\int_{0}^{1} 2 \pi(7-x)\left(x-x^{2}\right) d x=2 \pi \int_{0}^{1}(7-x)\left(x-x^{2}\right) d x .
$$

24. The plane region bounded by the curves $y=2$ and $y=2+2 x-x^{2}$ is rotated about the x axis. What integral gives the volume?
Solution. Draw a picture. Use the disk method. The two curves intersect when $2=2+2 x-x^{2}$. Then $x^{2}-2 x=0, x(x-2)=0$, and hence $x=0,2$. By testing a value, one sees that $y=2+2 x-x^{2}$ is above $y=2$ for x between 0 and 2 . Since we are rotating about the x-axis, the inner radius is 2 and the outer radius is $2+2 x-x^{2}$. Hence the correct integral is

$$
\int_{0}^{2} \pi\left(\left(2+2 x-x^{2}\right)^{2}-2^{2}\right) d x=\pi \int_{0}^{2}\left(\left(2+2 x-x^{2}\right)^{2}-4\right) d x
$$

25. The function $f(x)=\sqrt{16-2 x}$ is continuous on the interval $[0,8]$. What is its average value on this interval?
Solution. By definition the average value is $\frac{1}{8} \int_{0}^{8} \sqrt{16-2 x} d x$. Toward finding the antiderivative of the integrand, we make the substitution $u=16-2 x . d u=-2$.

$$
\int \sqrt{16-2 x} d x=-\frac{1}{2} \int \sqrt{u} d u=-\frac{1}{2} \frac{2}{3} u^{3 / 2}=-\frac{1}{3}(16-2 x)^{3 / 2} .
$$

Going back to our expression for average value, we have

$$
\frac{1}{8} \int_{0}^{8} \sqrt{16-2 x} d x=-\left.\frac{1}{8} \frac{1}{3}(16-2 x)^{3 / 2}\right|_{0} ^{8}=-\frac{1}{24}\left(0-16^{3 / 2}\right)=\frac{64}{24}=\frac{8}{3} .
$$

